Contributing Dimension Structure of Deep Feature for Coreset Selection Zhijing Wan¹, Zhixiang Wang^{2,3}, Yuran Wang¹, Zheng Wang¹, Hongyuan Zhu⁴, and Shin'ichi Satoh^{3,2} ¹Wuhan University, ²The University of Tokyo, ³National Institute of Informatics, ⁴A*STAR ## 0. Highlights - Propose CDS metric and constraint to successfully improve the current coreset selection pipeline; - Propose the CDS metric to introduce the information Contributing the Dimension Structure (CDS) - Propose CDS constraint to enrich the diversity of CDS in the coreset # 1. Introduction - B. Problems* when using similarity metrics: Similarity metrics ignore - the redundancy in the feature dimensions; - disparities among the dimensions that significantly contribute to the final previous selection methods would treat them equally during the selection However, C-dim 1 and C-dim 2 of contributes to their s, only C-dim 2 of contributes to its s. they have different contributing dimensions Our assumption: treat them differently *Studied specifically with feature-based selection methods using L2-norm 3. Experiments ## 2. Methodology #### A. CDS Metric of Deep Feature - **1** Dimension Reduction - **2** Deviation from the Mean $$\sigma = [|f_i^0 - \mu_0|, \dots, |f_i^{k-1} - \mu_{k-1}|] \in \mathbb{R}^k,$$ Where $i \in \{0, 1, \dots, N_c - 1\}.$ (3) Partition $$\Theta(x_i) = \left[\mathbb{I}(|f_i^0 - \mu_0|), ..., \mathbb{I}(|f_i^{k-1} - \mu_{k-1}|) \right]$$ $$CDS$$ $$\mathbb{I}(\Delta f) = \begin{cases} 1, \Delta f > \beta \\ 0, \Delta f \le \beta \end{cases}$$ 4 Comparison ## C. Coreset Selection with CDS Constraints + K-Center Greedy, Least Confidence, Moderate-DS #### **Soft version** ### A. Class-balanced sampling | Method | Sampling rates | | | | | | 80 KCG
KCG + Ours | 80 LC
LC + Ours | 80 CRAIG CRAIG + Ours | |------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------|--------------------|---------------------------------| | | 0.1% | 0.5% | 1% | 5% | 10% | 20% | (%) 60 | (%) 60. | Accuracy (%) | | Random | 18.9±0.2 | 29.5±0.4 | 39.3±1.5 | 62.4±1.7 | 74.7±1.9 | 86.9±0.3 | Accuraç
040 | Accuracy 40 | ocnra | | KCG | $18.7{\scriptstyle\pm2.9}$ | $27.4{\scriptstyle\pm1.0}$ | $31.6{\scriptstyle\pm2.1}$ | $53.5{\scriptstyle\pm2.9}$ | $73.2{\scriptstyle\pm1.3}$ | $86.9{\scriptstyle\pm0.4}$ | ¥ 40 | ¥ / | ₹ ⁴ 0 | | Forgetting | $21.8{\scriptstyle\pm1.7}$ | $29.2{\scriptstyle\pm0.7}$ | $35.0{\scriptstyle\pm1.1}$ | $50.7{\scriptstyle\pm1.7}$ | $66.8{\scriptstyle\pm2.5}$ | $86.0{\scriptstyle\pm1.2}$ | 20 0.1 0.5 1 5 10 20 | 0.1 0.5 1 5 10 20 | 20 0.1 0.5 1 5 10 20 | | LC | $14.8{\scriptstyle\pm2.4}$ | $19.6{\scriptstyle\pm0.8}$ | $20.9{\scriptstyle\pm0.4}$ | 37.4 ± 1.9 | $56.0{\scriptstyle\pm2.0}$ | $83.4{\scriptstyle\pm1.1}$ | Sampling Rates (%) | Sampling Rates (%) | Sampling Rates (%) | | CRAIG | $21.1{\scriptstyle\pm2.4}$ | $27.2{\scriptstyle\pm1.0}$ | 31.5 ± 1.5 | $45.0{\scriptstyle\pm2.9}$ | $58.9{\scriptstyle\pm3.6}$ | $79.7{\scriptstyle\pm3.5}$ | (a) KCG | (b) LC | (c) CRAIG | | Cal | $20.8{\scriptstyle\pm2.8}$ | 32.0 ± 1.9 | 39.1 ± 3.2 | $60.7{\scriptstyle\pm0.8}$ | $72.2{\scriptstyle\pm1.5}$ | $79.9{\scriptstyle\pm0.5}$ | | 30 | | | Glister | $19.5{\scriptstyle\pm2.1}$ | 29.7 ± 1.1 | 33.2 ± 1.1 | $47.1{\scriptstyle\pm2.6}$ | $65.7{\scriptstyle\pm1.7}$ | 83.4 ± 1.7 | 30 KCG | 25 LC | 30 CRAIG | | GC | 22.9 ± 1.4 | 34.0 ± 1.3 | 42.0 ± 3.0 | $66.2{\scriptstyle\pm1.0}$ | 75.6 ± 1.4 | 84.3 ± 0.4 | ─ KCG + Ours | 25 — LC + Ours | CRAIG + Ours | | M-DS | 21.0 ± 3.0 | $31.8{\scriptstyle\pm1.2}$ | $37.7{\scriptstyle\pm1.4}$ | $63.4{\scriptstyle\pm2.2}$ | $78.0{\scriptstyle\pm1.3}$ | $87.9{\scriptstyle\pm0.5}$ | nracy (6 | | Accuracy (%) | | GC+Ours | 24.6±1.7 | $36.4{\scriptstyle\pm1.0}$ | 43.1±1.8 | $67.1{\scriptstyle\pm0.6}$ | 76.9 ± 0.2 | 85.2±0.6 | 10 Accur | Accuracy 10 | Accur | | Δ | 1.7 ↑ | 2.4 ↑ | 1.1 ↑ | 0.9 ↑ | 1.3 ↑ | 0.9 ↑ | | 5 | | | M-DS+Ours | 22.0±2.0 | 33.0±1.3 | 40.7±1.0 | 64.9±0.8 | 79.6±0.4 | 87.9±0.2 | Sampling Rates (%) | Sampling Rates (%) | 1 5 10 20
Sampling Rates (%) | | Δ | 1.0↑ | 1.2 ↑ | 3.0 ↑ | 1.5 ↑ | 1.6 ↑ | 0.0↑ | (d) KCG | (e) LC | (f) CRAIG | Table 1: Comparison on the class-balanced sampling set- Figure 5: Performance improvement over baselines. We imting. We train randomly initialized ResNet-18 on coresets of prove current methods with our proposed CDS metric and CIFAR-10 selected by different methods and then test them constraint. We compare the improved versions with respecon the test set of CIFAR-10. Green emphasizes the best tive baselines on CIFAR-10 (a-c) and TinyImageNet (d-f) performance at each sampling rate. Δ denotes the improve- under the class-balanced sampling setting. The improved versions consistently outperform baselines, suggesting that ment of baseline+Ours over baseline. increasing the diversity of CDS in the coreset can universally enhance existing coreset selection methods. #### **B.** Ablation and Parameter Studies | | dim
reduction | partition | CDS-r | cons-
traint | | |------|------------------|-----------|-------|-----------------|----------------| | (v1) | Х | X | X | X | 34.0 ± 1.3 | | (v2) | X | × | X | ✓ | 32.8 ± 0.7 | | (v3) | ✓ | X | X | / | 34.3 ± 2.5 | | (v4) | ✓ | ✓ | X | ✓ | 33.5 ± 1.1 | | full | ✓ | ✓ | ✓ | ✓ | 36.4 ± 1.0 | Table 2: Ablation study on 0.5% of the CIFAR-10 Figure 7: Parameter analysis. It shows that our method achieves the best improvement compared to the baseline method (CRAIG) when K = 10-M-D and $\beta = 1e$ -4. #### B. Empirical findings - More data with different CDSs need to be sampled into the coreset - The coresets selected by the existing SOTA methods are sub-optimal Propose the CDS Constraints to improve SOTA selection methods ## C. TSNE embeddings of coreset Contact information: wanzjwhu@whu.edu.cn