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0. Highlights 1. Introduction

3. Experiments

⚫ Propose CDS metric and constraint to 

successfully improve the current coreset 

selection pipeline;

⚫ Propose the CDS metric to introduce the 

information of the Contributing 

Dimension Structure (CDS)

⚫ Propose CDS constraint to enrich the 

diversity of CDS in the coreset

A. Coreset selection B. Problems* when using similarity metrics: 

Similarity metrics ignore

⚫ the redundancy in the feature dimensions;

⚫ disparities among the dimensions that 

significantly contribute to the final 

similarity s

*Studied specifically with feature-based 

selection methods using L2-norm

⚫ More data with different CDSs need to 

be sampled into the coreset

⚫ The coresets selected by the existing 

SOTA methods are sub-optimal

C. Coreset Selection with  CDS Constraints

Hard version

1. 1𝑠𝑡 stage clustering

2. 2𝑛𝑑 stage clustering

3. data selection 

(using existing selection method)

Soft version

+ CRAIG*

+ GC*

A. Class-balanced sampling

B. Ablation and Parameter Studies

C. TSNE embeddings of coreset

Selected data,

unselected data

Full dataset Encoder CoresetConstraintMeasurer

CDS metric CDS constraint

L1-norm, L2-norm, Cosine distance, …

Encoder CoresetConstraintMeasurerFull dataset

Encoder

Measurer

Training Data Information

𝑆∗ = arg 𝑚𝑎𝑥𝑆⊂𝐷 𝑇 𝑆  𝑠. 𝑡.  |𝑆| ≤ 𝑏  

𝑠 𝐼𝑖 , 𝐼𝑗 , 𝑖, 𝑗 ∈ [1, 2, … , 𝑛]
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CDS Constraint:
𝑡1 ≈ 𝑡2 ≈ 𝑡3 ≈ 𝑡4

+ K-Center Greedy, Least Confidence, Moderate-DS 
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A large number 
of samples have 
the same CDS
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*See paper for more details
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C-dim 1

(-0.72, 0.2)

(-0.2, 0.7)

s(  ,  ) = s(  ,  ) = s(  ,  ),

previous selection methods would treat them 

equally during the selection

However,

C-dim 1 and C-dim 2 of       contributes to 

their s, only C-dim 2 of    contributes to its s.

they have different contributing dimensions

Our assumption: treat them differently

2. Methodology

① Dimension Reduction

② Deviation from the Mean

𝜎 = [|𝑓𝑖
0 − 𝜇0|, … , |𝑓𝑖

𝑘−1 − 𝜇𝑘−1|] ∈ ℝ𝑘,

Where 𝑖 ∈ {0,1, … , 𝑁𝑐 − 1}.

③ Partition

θ 𝑥𝑖 = 𝕀 𝑓𝑖
0 − 𝜇0 , … , 𝕀 𝑓𝑖

𝑘−1 − 𝜇𝑘−1

𝕀 ∆𝑓 = ቊ
1, ∆𝑓 >  𝛽
0, ∆𝑓 ≤  𝛽

④ Comparison
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B. Empirical findings

more

different CDS

A. CDS Metric of Deep Feature
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