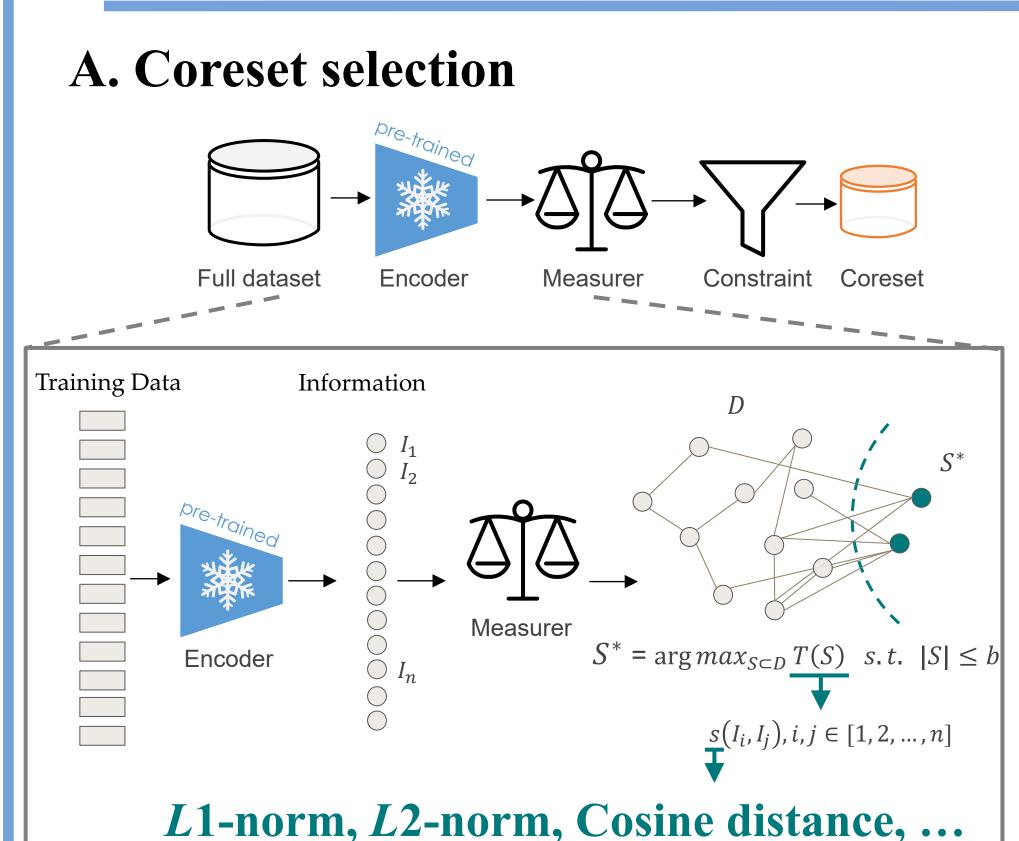
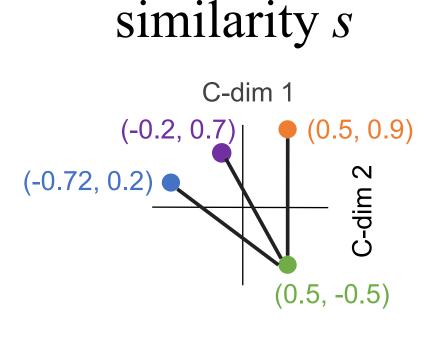


Contributing Dimension Structure of Deep Feature for Coreset Selection

Zhijing Wan¹, Zhixiang Wang^{2,3}, Yuran Wang¹, Zheng Wang¹, Hongyuan Zhu⁴, and Shin'ichi Satoh^{3,2}


¹Wuhan University, ²The University of Tokyo, ³National Institute of Informatics, ⁴A*STAR

0. Highlights



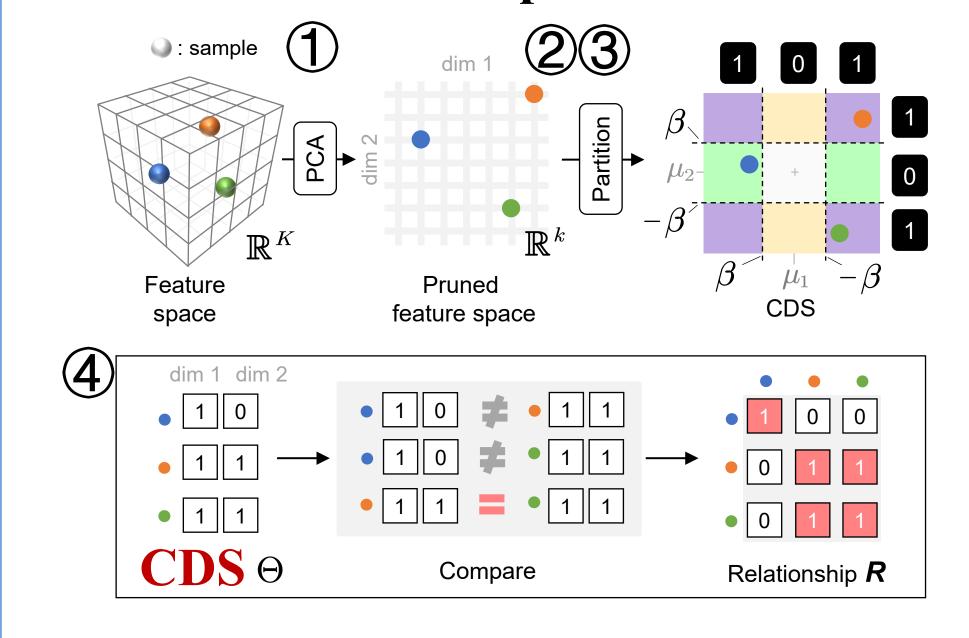
- Propose CDS metric and constraint to successfully improve the current coreset selection pipeline;
- Propose the CDS metric to introduce the information Contributing the Dimension Structure (CDS)
- Propose CDS constraint to enrich the diversity of CDS in the coreset

1. Introduction

- B. Problems* when using similarity metrics: Similarity metrics ignore
- the redundancy in the feature dimensions;
- disparities among the dimensions that significantly contribute to the final

previous selection methods would treat them equally during the selection

However, C-dim 1 and C-dim 2 of contributes to their s, only C-dim 2 of contributes to its s. they have different contributing dimensions


Our assumption: treat them differently

*Studied specifically with feature-based selection methods using L2-norm

3. Experiments

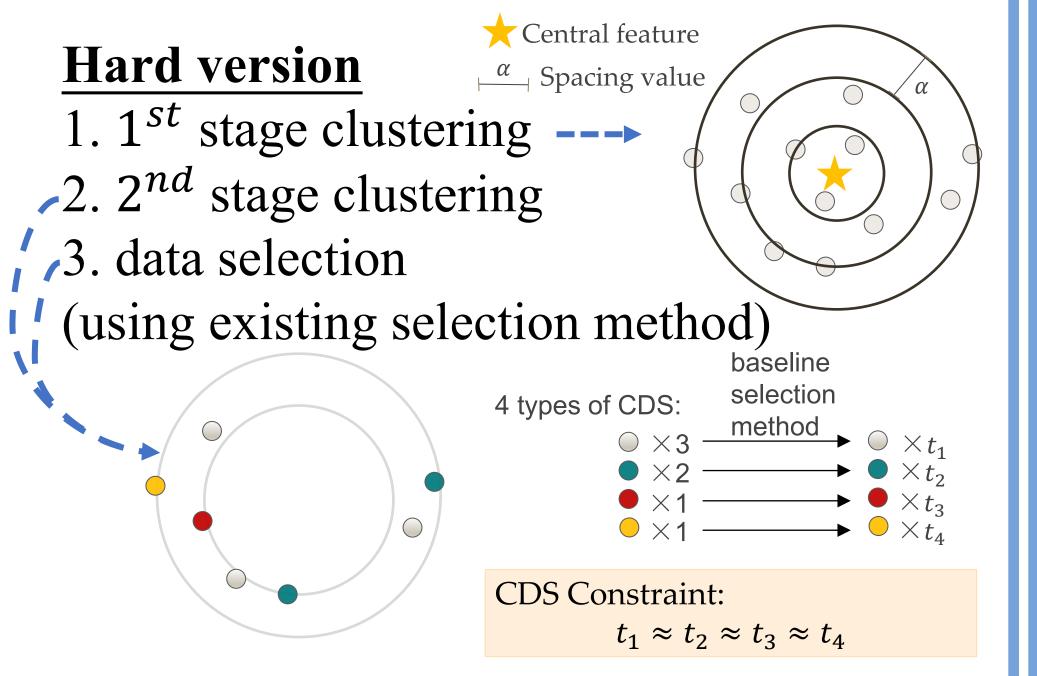
2. Methodology

A. CDS Metric of Deep Feature

- **1** Dimension Reduction
- **2** Deviation from the Mean

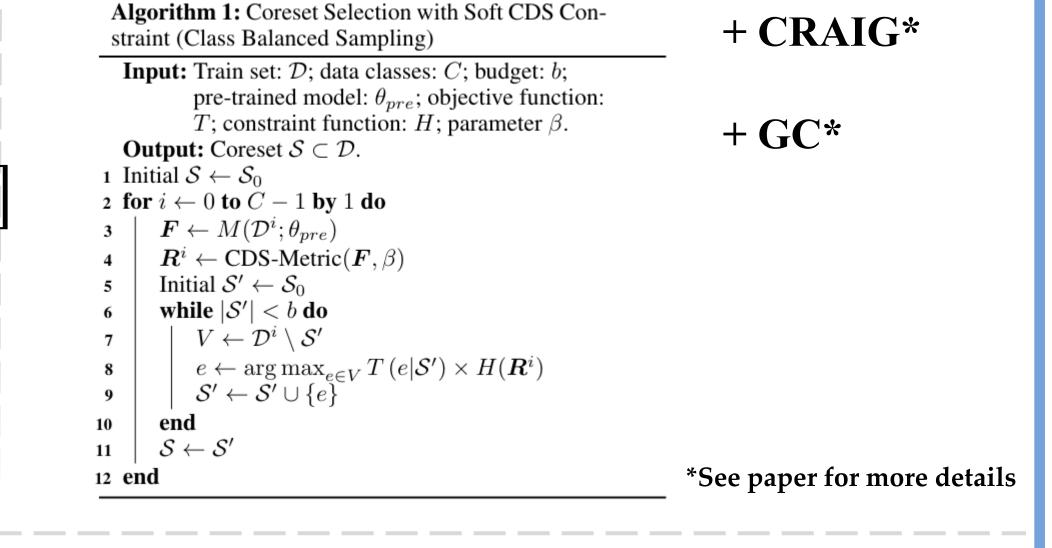
$$\sigma = [|f_i^0 - \mu_0|, \dots, |f_i^{k-1} - \mu_{k-1}|] \in \mathbb{R}^k,$$
Where $i \in \{0, 1, \dots, N_c - 1\}.$

(3) Partition


$$\Theta(x_i) = \left[\mathbb{I}(|f_i^0 - \mu_0|), ..., \mathbb{I}(|f_i^{k-1} - \mu_{k-1}|) \right]$$

$$CDS$$

$$\mathbb{I}(\Delta f) = \begin{cases} 1, \Delta f > \beta \\ 0, \Delta f \le \beta \end{cases}$$


4 Comparison

C. Coreset Selection with CDS Constraints

+ K-Center Greedy, Least Confidence, Moderate-DS

Soft version

A. Class-balanced sampling

Method	Sampling rates						80 KCG KCG + Ours	80 LC LC + Ours	80 CRAIG CRAIG + Ours
	0.1%	0.5%	1%	5%	10%	20%	(%) 60	(%) 60.	Accuracy (%)
Random	18.9±0.2	29.5±0.4	39.3±1.5	62.4±1.7	74.7±1.9	86.9±0.3	Accuraç 040	Accuracy 40	ocnra
KCG	$18.7{\scriptstyle\pm2.9}$	$27.4{\scriptstyle\pm1.0}$	$31.6{\scriptstyle\pm2.1}$	$53.5{\scriptstyle\pm2.9}$	$73.2{\scriptstyle\pm1.3}$	$86.9{\scriptstyle\pm0.4}$	¥ 40	¥ /	₹ ⁴ 0
Forgetting	$21.8{\scriptstyle\pm1.7}$	$29.2{\scriptstyle\pm0.7}$	$35.0{\scriptstyle\pm1.1}$	$50.7{\scriptstyle\pm1.7}$	$66.8{\scriptstyle\pm2.5}$	$86.0{\scriptstyle\pm1.2}$	20 0.1 0.5 1 5 10 20	0.1 0.5 1 5 10 20	20 0.1 0.5 1 5 10 20
LC	$14.8{\scriptstyle\pm2.4}$	$19.6{\scriptstyle\pm0.8}$	$20.9{\scriptstyle\pm0.4}$	37.4 ± 1.9	$56.0{\scriptstyle\pm2.0}$	$83.4{\scriptstyle\pm1.1}$	Sampling Rates (%)	Sampling Rates (%)	Sampling Rates (%)
CRAIG	$21.1{\scriptstyle\pm2.4}$	$27.2{\scriptstyle\pm1.0}$	31.5 ± 1.5	$45.0{\scriptstyle\pm2.9}$	$58.9{\scriptstyle\pm3.6}$	$79.7{\scriptstyle\pm3.5}$	(a) KCG	(b) LC	(c) CRAIG
Cal	$20.8{\scriptstyle\pm2.8}$	32.0 ± 1.9	39.1 ± 3.2	$60.7{\scriptstyle\pm0.8}$	$72.2{\scriptstyle\pm1.5}$	$79.9{\scriptstyle\pm0.5}$		30	
Glister	$19.5{\scriptstyle\pm2.1}$	29.7 ± 1.1	33.2 ± 1.1	$47.1{\scriptstyle\pm2.6}$	$65.7{\scriptstyle\pm1.7}$	83.4 ± 1.7	30 KCG	25 LC	30 CRAIG
GC	22.9 ± 1.4	34.0 ± 1.3	42.0 ± 3.0	$66.2{\scriptstyle\pm1.0}$	75.6 ± 1.4	84.3 ± 0.4	─ KCG + Ours	25 — LC + Ours	CRAIG + Ours
M-DS	21.0 ± 3.0	$31.8{\scriptstyle\pm1.2}$	$37.7{\scriptstyle\pm1.4}$	$63.4{\scriptstyle\pm2.2}$	$78.0{\scriptstyle\pm1.3}$	$87.9{\scriptstyle\pm0.5}$	nracy (6		Accuracy (%)
GC+Ours	24.6±1.7	$36.4{\scriptstyle\pm1.0}$	43.1±1.8	$67.1{\scriptstyle\pm0.6}$	76.9 ± 0.2	85.2±0.6	10 Accur	Accuracy 10	Accur
Δ	1.7 ↑	2.4 ↑	1.1 ↑	0.9 ↑	1.3 ↑	0.9 ↑		5	
M-DS+Ours	22.0±2.0	33.0±1.3	40.7±1.0	64.9±0.8	79.6±0.4	87.9±0.2	Sampling Rates (%)	Sampling Rates (%)	1 5 10 20 Sampling Rates (%)
Δ	1.0↑	1.2 ↑	3.0 ↑	1.5 ↑	1.6 ↑	0.0↑	(d) KCG	(e) LC	(f) CRAIG

Table 1: Comparison on the class-balanced sampling set- Figure 5: Performance improvement over baselines. We imting. We train randomly initialized ResNet-18 on coresets of prove current methods with our proposed CDS metric and CIFAR-10 selected by different methods and then test them constraint. We compare the improved versions with respecon the test set of CIFAR-10. Green emphasizes the best tive baselines on CIFAR-10 (a-c) and TinyImageNet (d-f) performance at each sampling rate. Δ denotes the improve- under the class-balanced sampling setting. The improved versions consistently outperform baselines, suggesting that ment of baseline+Ours over baseline. increasing the diversity of CDS in the coreset can universally enhance existing coreset selection methods.

B. Ablation and Parameter Studies

	dim reduction	partition	CDS-r	cons- traint	
(v1)	Х	X	X	X	34.0 ± 1.3
(v2)	X	×	X	✓	32.8 ± 0.7
(v3)	✓	X	X	/	34.3 ± 2.5
(v4)	✓	✓	X	✓	33.5 ± 1.1
full	✓	✓	✓	✓	36.4 ± 1.0

Table 2: Ablation study on 0.5% of the CIFAR-10

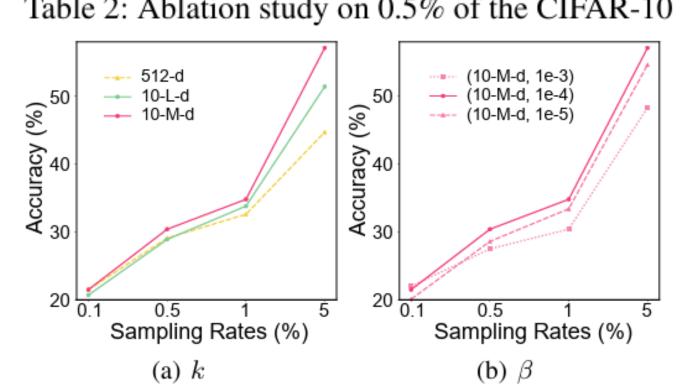
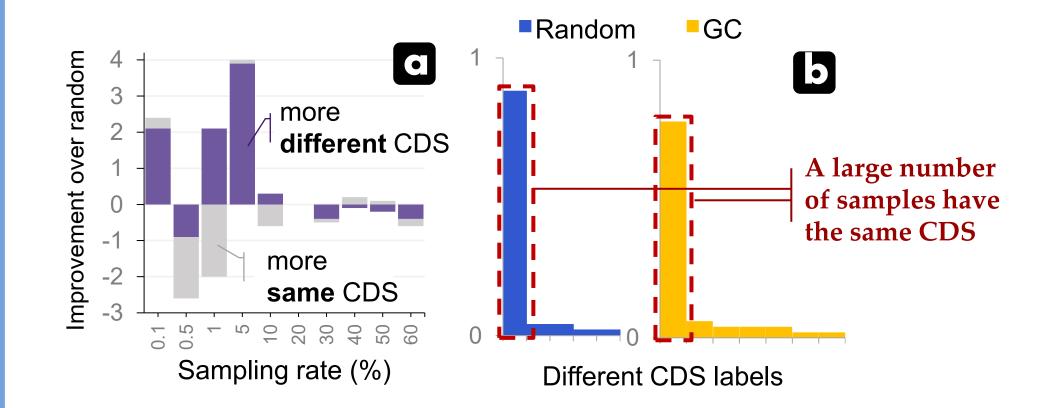
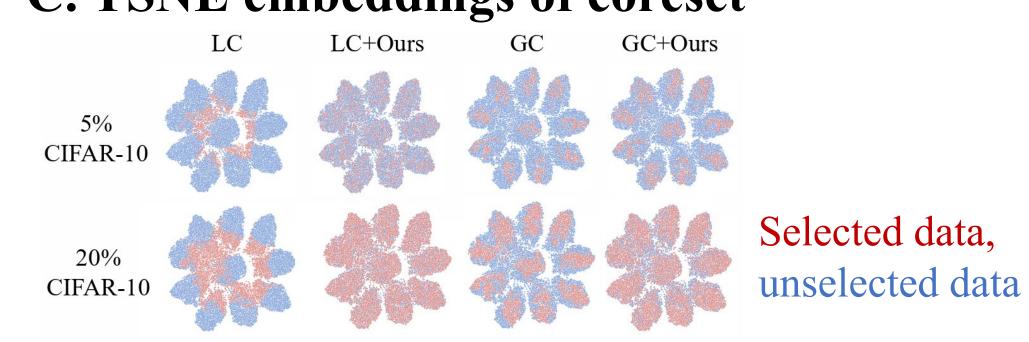



Figure 7: Parameter analysis. It shows that our method achieves the best improvement compared to the baseline method (CRAIG) when K = 10-M-D and $\beta = 1e$ -4.


B. Empirical findings

- More data with different CDSs need to be sampled into the coreset
- The coresets selected by the existing SOTA methods are sub-optimal

Propose the CDS Constraints to improve SOTA selection methods

C. TSNE embeddings of coreset

Contact information: wanzjwhu@whu.edu.cn